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Abstract
The magnetic properties of the Fe1−xRux alloy system for 0 � x � 0.10 are studied by using a
mean-field approximation based on the Bogoliubov inequality. Ferromagnetic Fe–Fe spin
correlations and antiferromagnetic Fe–Ru and Ru–Ru exchanges have been considered for
describing the temperature dependence of the Curie temperature and low temperature
magnetization. A composition dependence has been imposed in the exchange couplings, as
indicated by experiments. From a procedure of least-square fitting to the experimental results an
estimation of the interaction parameters was obtained, which yielded the low temperature
dependence of the magnetization and that of the ferromagnetic Curie temperature. Good
agreement was obtained with available experimental results.

1. Introduction

Fe-based alloys with 4d transition metals have been intensively
investigated since the earliest studies on magnetic materials.
Nevertheless, theoretical and experimental results on Fe–Ru
systems are scarce [1–11]. Iron and ruthenium are miscible
over the entire range of composition. The iron-rich Fe–Ru
alloys are ferromagnetic (FM) at room temperature in the
bcc structure [12]; the Curie temperature decreases steadily
with the Ru content. According to recent investigations on
disordered Fe1−x Rux alloys, for x < 0.30 a single phase is
formed with a bcc structure, whereas for x � 0.30 there is a
crystallographic transition to an hcp structure [13]. In the bcc
phase the lattice parameter has a linear increase with increase
of the Ru concentration. Experimental results provide evidence
that antiferromagnetic (AF) Fe–Ru exchanges can be formed in
dilute alloys depending on the solute concentration.

First-principles electronic structure calculations on the
magnetic phases of iron compounds in the CsCl structure with
4d elements have shown that FeRu does indeed have an AF
ground state [2]. The introduction of Ru in the immediate
neighborhood has been found to enhance the magnetic moment
at Fe sites [6]. Actually, a mechanism of competition
between FM and AF exchanges is expected to occur in Fe-rich
Fe1−xRux alloys, although the FM Fe–Fe coupling is expected

to be overwhelming. Recent first-principles calculations also
confirmed that with the introduction of Ru atoms in the
bcc iron matrix the Fe moment changes appreciably and the
average moment decreases steadily [14]. The Ru atom as
a single impurity in this host carries a small moment of
about 0.27 μB, which is ferromagnetically coupled to the
surrounding Fe atoms. With increase of the distance between
Ru atoms larger moments have been observed for the Fe
atoms in dilute alloys. The contact hyperfine field has also
been found to be very sensitive to the separation between
Ru atoms in the first shell of neighbors, and scales with the
magnetization.

In this study we apply a mean-field approximation based
on the Bogoliubov inequality to assess the composition
dependence of the intrinsic magnetic properties of disordered
Fe1−x Rux alloys. Since these alloys are formed in the bcc
structure, mean-field-like procedures are expected to provide
a very good approximation for describing their magnetic
behavior. Our model assumes that the Fe–Fe interaction
is ferromagnetic, while Ru–Ru and Fe–Ru interactions are
antiferromagnetic. The sites on the lattice are occupied either
by Fe atoms or Ru atoms, according to the distribution

P(εi ) = (1 − x)δ(εi − 1) + xδ(εi), (1)
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where εi = 1 (0) for Fe (Ru) atoms. The Hamiltonian reads

H = −
∑

〈i, j〉
Ji j Si S j , (2)

where the sum runs over all pairs of nearest-neighbor sites
and Si = ±1, for all sites i . Since the atoms are randomly
distributed in the lattice, the bond between nearest neighbors
Si and Sj , Ji j , takes the values J for Fe–Fe pairs, −αJ for Fe–
Ru pairs and −ξ J for Ru–Ru pairs, with probabilities (1− x)2,
2x(1 − x) and x2, respectively. We made the assumption
that both α and ξ parameters are positive. We will show
that it is crucial to take into account the dependence of the
exchange interaction on the fraction of Ru atoms. Since from
experimental results the lattice parameter varies with the Ru
concentration, this dependence is thereby expected.

In the next section we outline the formalism adopted,
focusing on the new features, and in section 3 we present and
discuss the results.

2. Calculational details

The Bogoliubov inequality provides a useful way to construct
a mean-field-like approximation to a Hamiltonian H which
cannot be solved exactly [15]. It reads

F(H) � φ(ζ ) ≡ [F0] + [〈H − H0〉0

]
, (3)

where H0 is an exactly solvable tentative Hamiltonian, F0 is
the free energy associated with H0, 〈· · ·〉0 represents averages
made on the ensemble defined by H0 and [· · ·] represents the
disorder average. This Hamiltonian depends on the variational
parameter(s) ζ . The right-hand side of the previous equation
is then minimized with respect to this (these) variational
parameter(s), in order to get the best approximation, given the
tentative Hamiltonian H0.

For this work we chose H0 to be a combination of single-
site and single-pair Hamiltonians, namely

H0 = −γS

n1∑

i=1

Si −
n2∑

{ j,k}, j �=k

Ji j S j Sk − γP

2n2∑

j=1

Sj , (4)

where the first sum runs over n1 isolated sites, the second sum
runs over n2 isolated pairs of spins and the last one runs over
the 2n2 sites in the isolated pairs, with N = n1 + 2n2, where
N is the total number of sites. The variational parameters are
γS and γP. The configurational average of the interactions Ji j

will be obtained with the probability distribution

P(Ji j) = (1 − x)2δ(Ji j − J ) + 2x(1 − x)δ(Ji j + αJ )

+ x2δ(Ji j + ξ J ). (5)

Note that, if the site occupation is subject to the probability
distribution given by equation (1), the bonds are no longer
independently distributed since the presence of a Ru atom at a
site forces the eight bonds that emerge from this site to be either
Ru–Ru or Fe–Ru. This correlation is not taken into account in
equation (5). However, since in our approximation pairs are
independent, this correlation is not present at this level and then
we can use equation (5) to make the configurational averages.

It is easy to show that the free energy associated with the
trial Hamiltonian H0 is given by

F0 = −kT ln(Z N−2n2
S Z n2

P ), (6)

where N is the number of sites, k is the Boltzmann constant, T
is the temperature, and

ZS = 2 cosh(γS/kT ) (7)

and

ZP(Ji j ) = 2 exp(Ji j/kT ) cosh(2γP/kT ) + 2 exp(−Ji j/kT ).

(8)
Therefore,

[F0] =
∫

F0P(Ji j)dJi j . (9)

In the same way we obtain
[〈H − H0〉0

] = −
(

Nz

2
− n2

)
m2

∫
Ji jP(Ji j)dJi j

+ (N − 2n2)γSm + 2n2γPm, (10)

where m is the magnetization (see the next two equations) and
z = 8 for the bcc lattice. Then φ(ζ ) is constructed according
to equation (3).

The magnetization can be obtained from isolated sites or
from isolated pairs, respectively:

mS =
[

1

β

∂ ln ZS

∂γS

]
= tanh(γS/kT ) (11)

and

mP =
[

1

β

∂ ln ZP

∂γP

]
= 2 sinh(2γP/kT )

×
{
(1 − x)2 exp(J/kT )

ZP(J )
+ x2 exp(−ξ J/kT )

ZP(−ξ J )

+ 2x(1 − x)
exp(−αJ/kT )

ZP(−αJ )

}
, (12)

where β = 1/kT .
Minimizing the approximated free energy with respect

to γS and taking into account the above expressions for the
magnetization, we obtain

γS = z

z − 1
γP. (13)

We have chosen n2 = z N/2, which is the maximum
number of pairs for a lattice of N sites and coordination
number z. Also, φ(ζ ) decreases when n2 increases and,
therefore, the value that we chose for n2 leads to the minimum
value physically meaningful for φ(ζ ). We believe this to lead
to the best approximation possible for the true free energy
within our procedure.

By imposing that the two expressions for the magnetiza-
tion, i.e., equations (11) and (12), are equal, expanding them
for small γS and γP, and using equation (13), we obtain

z

2(z − 1)
=

{
(1 − x)2

1 + exp(−2J/kT )
+ 2x(1 − x)

1 + exp(2αJ/kT )

+ x2

1 + exp(2ξ J/kT )

}
. (14)
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Figure 1. Critical temperature as a function of the Ru concentration.
Experimental points are represented by circles. Squares (triangles)
represent constant AF interactions, JAF, with JAF/J = 1.0 (0.79),
where J is the strength of the ferromagnetic interaction between Fe
atoms. The dashed line represents results from a least-square fitting
taking into account that JAF varies with x in the form
JAF = 0.54 − 5.4 x .

(This figure is in colour only in the electronic version)

This expression with z = 8 can be used to obtain the
critical temperature for the bcc lattice as a function of x .
The experimental values of these critical temperatures were
reported in [13]. We have used a best fitting procedure in order
to evaluate the parameters α and ξ ; details will be given and the
results discussed in section 3. Note that, since we have made
an expansion for small γS and γP, the previous expression is
valid only near Tc.

We can also evaluate the magnetization, again imposing
that mS = mP (see equations (11) and (12)) and solving it for
γS with the help of equation (13). Therefore the value of γS can
be used in equation (11) to evaluate mS. See the next section
for results and a discussion.

3. Results and discussion

The procedure outlined in the previous section can be used to
obtain the value of the exchange constant, J , for pure iron. In
this case, the experimental value for the critical temperature
is Tc = 1043 K; from equation (14) with x = 0, we obtain
J = 12.9 meV. This value agrees with the one found in [13]
and is within the range 10–50 meV, as expected for Fe, Co, and
Ni [16].

Equation (14) can also be used to adjust the parameters
to fit the experimental values for the critical temperature as a
function of the Ru fraction, x (see table 1). The experimental
values were taken from [13]. To show that it is indeed
necessary to take into account a variation of the AF interaction
constants with x , we have plotted in figure 1 the critical
temperatures given by equation (14) with α = ξ = 1.0
(squares) and α = ξ = 0.79 (triangles). This last value is
the one which makes the experimental and theoretical values
coincide for x = 0 and 0.02. Clearly, a constant AF interaction
will not adjust the experimental values. We then propose a
concentration dependence for the AF interactions, as has been
pointed out in [13]. Since we have only five experimental
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Figure 2. Magnetization versus temperature for five different x
values. The inset shows details of the magnetization behavior at low
temperatures. The legends are the same for the two graphs; the
outermost curve corresponds to x = 0 while the innermost one is for
x = 0.10.

Table 1. Critical temperatures for Fe1−x Rux ; figures in parenthesis
are the errors and apply to the last figure (values taken from [13]).

x Tc

0.0 1043
0.02 968(2)
0.04 928(2)
0.06 908(2)
0.10 838(2)

values of TC for the disordered alloy, we will assume that (see
equation (5))

α ≡ ξ = α0 − α1 x . (15)

The values that we obtain with a nonlinear least-square fitting
method are

α0 = 0.54(2); α1 = 5.4(4), (16)

where the values in parentheses are the errors in the last
decimal figure. In figure 1 the theoretical curve is represented
by a dashed line, while the experimental results are represented
by open circles (error bars are smaller than the points). As
can be seen, the agreement between the adjusted curve and the
experimental is excellent.

We have also calculated the magnetization for some values
of x , as outlined at the end of the previous section. The
results are depicted in figure 2: as expected, the critical
temperature decreases as the concentration of Ru is increased.
Since we have used a mean-field approximation, static critical
exponents assume their classical values. Therefore, the
question of universality classes cannot be addressed by the
present procedure. We are now performing a Monte Carlo
simulation on this alloy to calculate thermodynamic quantities
and some critical exponents. Note the inset in figure 2: we
expect the zero-temperature value of the magnetization to vary
with x , since the introduction of AF interactions will freeze
some of the spins in the reversed position, when compared
to the Fe background. In fact, m(T = 0) decreases as the
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fraction of Ru is increased, as noted for x = 0.02, 0.04 and
0.06. For x = 0.10 the AF bonds are no longer present: for the
values of the adjusted parameters α0 and α1 (see equations (15)
and (16)) and for x = 0.10, α = ξ = 0 and the Ru atoms act
as nonmagnetic impurities. Since the fraction of magnetic (Fe)
atoms for x = 0.10 is well above the percolation threshold for
the bcc lattice, we expect nearly all Fe atoms to take part in
the infinite cluster; therefore, the value of the magnetization at
T = 0, for x = 0.10, should be close to 1. As the temperature
is raised from zero, the AF bonds (which are weaker than the
FM ones) disorder for small values of T and the magnetization
increases. Nevertheless, for finite (but still low) temperatures,
the behavior of the magnetization is not monotonic with respect
to x . This result is a consequence of the balance between two
effects: as x increases, m decreases due to a greater number of
AF bonds but increases due to the weakening of these bonds.
This feature explains the behavior seen in the inset of figure 2.
The fact that the magnetization returns to 1 as the temperature
is increased, for x = 0.02, 0.04 and 0.06, may be an artifact of
the mean-field approximation: this aspect will be clarified by
the Monte Carlo simulation.

In summary, we have calculated the interaction constants
for the Fe1−x Rux system by using a mean-field approximation
based on the Bogoliubov inequality. The agreement between
our theoretical predictions and the results of experiments is
excellent and shows that it is necessary to take into account a
concentration dependence of the antiferromagnetic interaction
strength. We have also calculated the magnetization as a
function of the temperature for some x values, and discussed
in detail the expected low temperature behavior. At T = 0 the
magnetization m decreases as the Ru content x increases for
0 � x < 0.10 but attains the value 1.0 for x = 0 and 0.10.
At low but still finite temperatures the dependence of m on
x is nonmonotonic, owing to a competition mechanism which
arises from the effects introduced as Ru atoms substitute for
Fe: the appearance of antiferromagnetic interactions and their
weakening due to the dependence of the antiferromagnetic

constant exchange on x . We are now doing a Monte Carlo
simulation on this system in order to calculate thermodynamic
quantities and critical exponents.
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